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ABSTRACT
Physicalizations represent data through their tangible and mate-
rial properties. In contrast to screen-based visualizations, there
is currently very limited understanding of how to label or anno-
tate physicalizations to support people in interpreting the data
encoded by the physicalization. Because of its spatiality, contextu-
alization through labeling or annotation is crucial to communicate
data across different orientations. In this paper, we study labeling
approaches as part of the overall construction process of bar chart
physicalizations. We designed a toolkit of physical tokens and paper
data labels and asked 16 participants to construct and contextualize
their own data physicalizations. We found that (i) the construction
and contextualization of physicalizations is a highly intertwined
process, (ii) data labels are integrated with physical constructs in
the final design, and (iii) these are both influenced by orientation
changes. We contribute with an understanding of the role of data
labeling in the creation and contextualization of physicalizations.
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• Human-centered computing → Empirical studies in visu-
alization.
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1 INTRODUCTION
Physical data visualizations or physicalizations are tangible and
three-dimensional artifacts that represent or encode data in their
material and physical form [30]. These physical data representa-
tions are useful tools to support collaborative scenarios and the
exploration of data, but also open up new ways to interact with,
transform, and inspect data [14]. For physicalizations – as with 2D
visualizations – the inclusion of data labels, axes values, legends
and annotations are in many cases fundamental to contextualizing
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the presented data. They provide people with context, frame of
references, and visual guides on how to interpret the data. Particu-
larly because of the challenges associated with multi-orientation
interpretation of data to groups of people [40], such labels and
annotations are instrumental in helping people make sense of the
presented data. We refer to this as the contextualization of physical-
izations, which is the inclusion of contextual elements such as data
labels, axes, legends, and annotations to support the extraction of
information from physical representations of data.

Despite the obvious importance of providing guiding context to
visualizations, related work on physicalizations [13, 14, 30], does
not actively consider the labeling of physical data points and struc-
tures. Work that does consider labeling of physicalizations in some
form (e.g., [38, 45, 47]), often use very different approaches that are
not systematic or even consistent with each other. From a concep-
tual viewpoint, the current definition of physicalization [30] indeed
focuses on materiality and does not highlight ‘data labeling’1 as an
explicit part of the physicalization itself. However, a physicaliza-
tion cannot do without context; the physicality and spatiality of
physicalizations explicitly opens up questions such as (i) where to
locate different kinds of labels (i.e. title, axes labels, and data values)
in relation to the canvas and/or other data points, and (ii) how
this is affected by user orientation (e.g. when multiple people are
looking at the physicalization from different perspectives). More
fundamentally: why, how, and when should ‘data labels’ be included
in the design, construction of, and interaction with physicalizations?

Research on Constructive Visualization [26] focuses on explicitly
understanding the translation process from raw data to physical
form. While this approach has provided detailed insights into the
construction of data points and structures of the physicalization,
they similarly do not actively include data labeling in the authoring
of physicalizations. For example Fan et al. [17] provide ready-made
braille labels but leave contextualization of data open to partici-
pant’s choice, and both Huron et al. [27], andWun et al. [52] include
the annotation of data as a subsequent task to the construction task.
As observed by Wun et al. [52], the creation of physical data repre-
sentations results in an interrelation principle: the placement and
rearrangement of physical data objects in space – loading data –
simultaneously influences the visual mapping and presentation map-
ping of a visualization. In line with this observation, we propose
and argue that the act of ‘data labeling’ should be an active part of
this process, further intertwining the construction and contextual-
ization of physical data visualizations.

In this paper, we aim to answer the question: how does data label-
ing play a role in the physicalization creation process, visualization

1Not to be mistaken with the term ‘data labeling’ as used in Machine Learning to
describe the annotation of raw data to train a classifier.
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design, and when viewed from different orientations? As studying
data labels in isolation is artificial, our research explores the role of
‘data labeling’ in the entire construction process of barchart-type
3D physicalizations [27]. We follow the approach from Constructive
Visualization research, and “study human behavior independently
from the design of specific software tools” [27] to inform the design of
future physical visualizations. To study this process, we designed a
toolkit that allows for the creation of data visualizations in 3D space
and includes data labeling as ‘building block’ alongside the use of
physical 3D tokens. We conducted a study with 16 participants who
completed a total of 32 construction tasks. We contribute (i) an
understanding of the role of data labeling in the construction and
contextualization of physical visualizations, (ii) an overview of how
textual and physical constructs coexist in visualization designs, and
(iii) reflections on coping strategies for contextualizing bar chart
physicalizations across orientations in physical space.

2 RELATEDWORK
Herein, we discuss (i) existing concepts and knowledge on labeling
from 2D Information Visualization (InfoVis), (ii) current use of
data labels in existing physicalizations, and (iii) approaches from
Constructive Visualization.

2.1 Labeling in Information visualization
Information visualization [3, 7, 8, 35, 50] has a long standing tra-
dition, rooted in a history of cartography and later in Computer
Graphics, of labeling and annotating visual representations of data.
Many of these labeling practices have now been operationalized
into toolkits, default visualizations, and best practices [e.g. 19, 23].
As described by the ‘Data Design Standards’ [23]: “Labels make it
easier for users to understand data visualizations by using text to
reinforce visual concepts. Labels are traditionally used to label axes
and legends, however, they can also be used inside of data visualiza-
tions to communicate categorical, sequential, or value attributes”. In
recent years, labeling research has mainly focused on novel forms
of graphic algorithms and approaches to handle label placement in
complex visualizations [1, 9, 15, 31] including a focus on automa-
tion [32], 2D graph layout techniques [20], or best practices for
‘good’ label placement [49]. Nonetheless, as suggested by Brath [5]
“3D InfoVis is here to stay”, meaning work has also looked at labeling
Interactive 3D visualizations [2] or 3D geo-referencing [11].

With the move to a more interactive ‘human-data interaction’
approach, new insights around semantic or interactive versions of
information visualization labels have been introduced [48], opening
new possibilities for touch-based or even physical data visualiza-
tions. A recent concept in the field of information visualization
that operationalizes this increased interactivity is the extended in-
fovis pipeline model [28]. This model explains the translation from
raw data to a visualization that can be rendered in the physical
world. It distinguishes between data transformation, visual mapping,
presentation mapping, and rendering. Especially visual and presen-
tation mapping are of importance to discuss here, as it explains
the difference between creating the initial abstract physical form
and the fully-specified visual presentation [28]. According to the
infovis pipeline, elements such as axis labels, grid lines, legends and
captions are decoration operations as part of presentation mapping.

However, the precise way in which these grids, legends or captions
should be designed in physical 3D space is not specified nor defined.

2.2 Labeling in Physicalization
Looking at the use of data labels in existing physicalization research,
we observed that state of the art (summary in [14, 30]) pays little
attention to data labeling. Therefore, other means are often required
to contextualize the data represented, such as prior knowledge, the
use of an external device to reveal data, or no means to extract
details (i.e. because the intention is purely aesthetic and/or by es-
timation). Particularly exploratory physicalizations such as data
sculptures [4, 34, 44, 54] or data installations with complex ecosys-
tems [25, 33, 38, 39] do not provide on-physicalization labeling.

Physicalizations that do use labeling in some form, do so in a
myriad of different ways. Examples of interactive systems are work
from Veldhuis et al. [47] that presented textual information in a
single direction, or Taher et al. [45] that used multiple displays
to provide two duplicates for x-axis and y-axis (and only shows
categorical/sequential data but no values or legend for values). Ex-
amples of static physicalizations are work from Jansen et al. [29]
that compared on-screen 3D bar charts with labels floating in space
in the reading direction of the viewer, with physical 3D bar charts
that represent the same labels sideways in a counterclockwise direc-
tion (with the addition of an engraved transparent acrylic back wall
to show scale); and Danyluk at el. [10] that used similar physical
3D models but then with alternating reading directions on different
sides of the base. Gourlet et al. [22] built a physicalization where the
reading direction was aligned in 4 different directions, oriented by
each side of the table. Stusak et al.’s [43] work on physicalizations
used numeric values on the physical bar-charts, labels for countries
on the flat surface, and a transparent background panel with scales.
Finally, recently Ren et al. [37] explored physicalizations that were
annotated with a basic legend on one side of the visualization.

While these labeling approaches are generally well designed,
they are very different and inconsistent with each other, opening
up questions around what strategies or approaches can be used for
labeling of physicalizations? Furthermore, because of the intrinsic
three-dimensionality and physical nature of physicalizations, they
can be used, observed, perceived and approached from different
directions, making the process of labeling even more challenging.
From a conceptual and theoretical perspective, we also observe that
labeling is never explicitly included in the definition and scope of
physicalization [30], the rendering process [12], or a recent reflec-
tion on the research domain of physicalization [14]. Hence, there is
currently no principles or standard ways to label in physical space
when it comes to reading direction, text orientation, and location
in relation to physical data points and the canvas.

Text orientation and readability of labels is also a concern for
work on virtual reality [6, 42]. While a full review of this work is
beyond the scope of this paper, previous work has combined phys-
icalization or visualization with VR environments. For example,
Ren and Hornecker [37] explored the differences between physi-
calization and VR simulation and use basic text labels next to the
bar-chart in both approaches. Ulusoy et al. [46] explored VR-models
of bar-chart physicalizations that were annotated with labels and
presented on different scale (i.e. hand-size versus room-size) in
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virtual space. Finally, Danyluk et al. [10] compared physical and VR
visualizations, again leveraging data annotations and labels around
3D bar-charts.

Lastly, outside the context of physicalization, work has explored
how to position and orientate text, illustrating that there are dif-
ferent ways in which text can be represented in 2D and 3D space.
These studies discuss for instance text orientation [24], horizontal
versus vertical reading [36], left-to-right versus top-to-down read-
ing [21], and the influence of 3D rotations on reading speed [51].
These findings from HCI studies agree with literature from the
vision community that also demonstrates the impact orientation
has on reading speed [53].

2.3 Constructive Visualization
Within the research space of Physicalization, ‘Constructive Visual-
ization’ work explored how to author and construct physical data
presentations [27, 52]. This work is concerned with describing and
exploring the methods, strategies and tools that help people trans-
form data into physical representations. However, currently these
models and approaches for constructive visualization do not include
data labeling as an active component in the construction process
(visualization mapping), but rather treat annotation of data (presen-
tation mapping) as a secondary process after the construction of
the physical form factor. Both Huron et al. [27] and Wun et al. [52]
included annotation as a subsequent task to the construction task,
while Fan et al. [17] left it up to the participant to use pre-made
braille labels in their visualization.

Wun et al. [52] observed that the construction of physicalizations
results in an interrelation principle [52], asmoving physical elements
influences multiple parameters of the visualization pipeline at once.
For example, when loading data (placing data objects in the canvas),
one simultaneously has to consider the visual mapping (where to
place the object in relation to other data objects), and presentation
mapping (object placement within the canvas). We suspect that be-
cause of this interrelation principle, the labeling of physicalizations
will similarly be intertwined into the overall process.

Hence, for validity we do not want to and/or cannot investigate
the labeling of data in isolation. Our methodology is, thus, based on
constructive visualization work, with the difference that we treat
labeling as an active component in the authoring process.

3 STUDY RATIONALE
The focus of this study is to build a better understanding of the
role of labels in physicalizations. With data labels or data label-
ing we refer to annotations that, like visualizations on a screen,
highlight axes, data points, legends, and other visual structures
that support people in reading and interpreting data effectively.
While prior work has considered the labeling of physicalizations
in various forms, these have almost always been post-hoc activ-
ities from a necessity to counter some of the open challenges or
common problems in physicalizations. Therefore, there are no real
insights or principled approaches into how, if, and when to label
physicalizations. While we can borrow initial insights from screen-
based visualizations [2, 15, 23, 35], many of these do not translate
directly to the context of physicalizations. Because of their physical-
ity, people have very different strategies to perceiving, using, and

interacting with physicalizations. This implies that more systematic
research into labeling strategies and practices is needed to explore
how physicalizations can be labeled effectively – taking into ac-
count their specific challenges around spatiality, user orientation,
and perception.

As labeling is difficult and artificial to understand in isolation,
we specifically examine labeling as part of the general construc-
tion process of physicalizations. Because the interrelation princi-
ple [52] suggests that constructing physicalizations is a highly in-
tertwined process that combines various aspects of the extended
infovis pipeline model [28], we argue that it cannot be understood
or studied in isolation. By studying and documenting the strategies
that people take for labeling of data, axes, clusters and entire phys-
icalizations, we can learn more about the role of labeling in the
overall construction process, but also about how non-experts view
physical structures and data points in relation to a given dataset.
While studying the labeling of existing physicalizations might help
build some insights into how data labeling works, we argue that this
would also be a post-hoc activity that reduces labeling to a second
class aspect of physicalization – where we suggest it should be a
fundamental and inherent part of the overall physicalization design.
As such, our study methodology studies labeling in combination
with other constructive visualization processes [27, 52].

4 METHODOLOGY
The goal of this study is to investigate the role of data labeling (i)
during the creation process of a physical visualization, (ii) within
the resulting visualization design, and (iii) when viewing the visu-
alization from different orientations and perspectives. Our study
is designed to document and highlight strategies and approaches
towards constructing a 3D bar chart physicalization and anno-
tate them with contextual labels using a custom design toolkit and
methodology. We designed a task that required participants to build
two physical visualizations given a toolkit including a set of physi-
cal colored blocks and textual labels. During the task, the researcher
presented the participant with one dataset at a time and prompted
them to build the resulting data using the toolkit. After the creation
process, participants were asked to reflect on their visualization
design during an integrative process, as the canvas was rotated
in increments of 90 degrees. On each rotation, participants were
required to observe their visualization from the new viewing angle,
and (if desired) make changes to their labeling.

4.1 Apparatus
We created a custom-made toolkit including plastic building blocks
and paper labels inside a storage box. The toolkit follows [27, 52]
in providing a set of custom tools aiming to avoid the artificial
constraints introduced by existing systems, as they are often limited
by the technologies used. We discuss each of the components below:

4.1.1 Building blocks. The design of the building blocks is inspired
by interlocking maths learning cubes such as Snap Cubes®2 and
Edx Education Linking Cubes3. Each block has three different types
of faces: 1 square stud, 3 square holes, and 2 regular faces (Figure 1).

2https://www.learningresources.co.uk/snap-cubesr-set-of-100
3https://edxeducation.com/portfolio-item/2cm-linking-cubes-1000pcs-12012/
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The goal of this design is to allow for enough freedom of the creation
in 3D space – the set of different faces per block supports attachment
in multiple directions – but also keep them simple and consistent
in appearance. Each block is 2x2x2cm in size and is made of 3D
printed plastic. The storage box contained 25 blocks of each out of
5 colors (red, orange, yellow, green, blue), totally 125 blocks.

Figure 1: A 3D rendering of the block design, 3D-printed
plastic blocks, and the study setup.

4.1.2 Data labels. The set of paper data labels included: a title label,
a label for each categorical (i.e., seasons, countries) and sequential
attribute (i.e., years), and a label for each single value attribute. We
purposely provided a minimal set of data labels with no duplicates
and no inclusion of axis labels (i.e., ‘X’, ‘Y’, ‘Country’, ‘Season’,
‘Year’) to reduce the possibility for redundancies. Lastly, we pro-
vided participants with some sticky tack to allow for freedom in
placing labels, i.e., sideways on blocks or other midair placements.

4.1.3 Canvas. We designed a building area made of a white plastic
40x40cm canvas with square holes at every 2cm so that the building
blocks could be snapped in. Figure 1 shows the experimental setup
for all tasks. The participant was seated in front of the white square
canvas with the toolkit on their left.

4.2 Datasets
We used two datasets of similar structure and complexity as Huron
et al. [17] (included in supplementary material). The first dataset4
represented CO2 emissions in tons per person for five different
countries, across three years. The second dataset5 represented rain-
fall in the United Kingdom in millimeters for four seasons, across
four years. All values are rounded derivatives from the raw data.
The datasets were selected so that they are understandable, inter-
pretable and transferable for non-expert participants.

4.3 Participants
We recruited 16 participants (8 identified as male, 7 as female, and
1 as non-binary), of which 5 were 18-24 years, 4 were 25-34 years, 6
were 35-44 years, and 1 was between 45-54 years old. Participation
was voluntary and without compensation. There were no particular
requirements for participation other than that participants were
(corrected to) fully sighted and physically able to construct a visu-
alization with objects. Of all participants, 12 were familiar with the
concept of data visualization, 13 were experienced in reading data
visualizations, and 10 experienced in creating data visualizations.

4https://www.gapminder.org/data/
5https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-
series

4.4 Procedure
At the start of the study, we introduced participants to the study,
asked them to sign a consent form, and collected their demograph-
ics. We explained the goal of the study: to understand how peo-
ple construct and label physical visualizations using an exemplar
toolkit. We gave participants a set of general instructions and in
total asked them to visualize two datasets using the toolkit. Partici-
pants were asked to think out loud during the creation process. If
participants indicated to have finished but forgot to contextualize
their physical constructs they were prompted by the researcher,
for example about the topic “how would someone else know what
your visualization is about?” or the created encoding “how would
they know what one block represents?”. When finished with the first
task (T1), the researcher would ask them to take two pictures of the
end result and explain their visualization design. Afterward, the
participant was asked to rotate the canvas either 90 degrees clock-
wise or counterclockwise, and indicate if they would like to make
any changes to the labeling of the visualization and if so, they were
requested to perform these changes, and take two pictures (from
different angles) to capture the current state of the visualization.
We repeated this process twice so eventually the participant had
seen all 4 orientations of the square canvas. This whole process was
repeated during task 2 (T2) with a second dataset. The mapping
between the two datasets and two directions was counterbalanced
across participants using a balanced Latin square (yielding 4 partici-
pant groups). The whole experiment lasted between approximately
60 to 90 minutes, depending on the participants’ performance.

4.5 Data Collection
During the study, we collected three different types of data:

4.5.1 Video. With participants’ consent we took video and audio
recordings of their interactions using two GoPro’s: from a top-down
viewing angle and a view from the side. We used these videos to
capture participants’ actions during the creation process.

4.5.2 Pictures. After each task, and after the changes made upon
each rotation of the canvas we asked participants to take two pic-
tures from different viewing angles to capture the current state of
the visualization. The first picture was a representation of their
viewing angle while seated, and the second picture from any angle
they preferred to view their visualization most comfortably and/or
effectively. We used these pictures to extract (i) the properties of
their visualization design, and (ii) any changes to the labeling across
different orientations.

4.5.3 Participant Observations. During the task, the researcher
made notes of participant comments while thinking out loud. After
each task we asked participants to (i) elaborate on the dataset using
their visualization, (ii) explain the visualization they created, and
(iii) if there was anything they struggled with while creating it. This
was to understand participants’ creation process and the properties
of their visualization design. After both tasks, we asked them about
their overall experience with the toolkit.
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4.6 Method of Analysis
To be able to extract information on (i) the construction and contex-
tualization process and (ii) the properties of the final visualization
designs we developed coding schemes for the videos and pictures:

4.6.1 Analysis of the Creation Process. We analyzed the videos, us-
ing a qualitative and iterative approach, inspired by the approaches
of Wun et al. [52] and Huron et al. [27]. We used the ethogram as
created by Wun et al. [52] as a reference, but refined it to meet our
apparatus (3D blocks instead of 2D tiles and the inclusion of labels)
and study aim (role of labeling in the creation of physicalizations).

The first pass involved two researchers performing open coding
to identify the behaviors of interest. Once the coding scheme was
established, there was primarily one coder, with random checks to
verify researcher agreement.

In total, we coded 13 types of actions across 3 activity categories
(Table 1). Additionally, we captured when which out of 4 label types
(title, sequential, categorical, and value) was interacted with.

Activity category Action Description
Read Read the data table.
Verify Verification of visualization, i.e. compare 

with data table and/or count blocks.
Correct error Correct an error.
Collect Collect (and count) blocks in hand, canvas 

or workspace.
Organize Organize (constructs of) blocks spatially in 

the canvas, without placing.
Build in hand Build block constructs in hand.
Build in canvas Build block constructs in the canvas, 

without placing.
Place in canvas Place block constructs in the canvas.
Rearrange Rearrange and place block(s) in the canvas.
Placeholder Place placeholder block(s) in canvas for 

labeling purposes.
Order Order labels in the workspace.
Label Place labels in canvas.
Relabel Rearrange label(s) in canvas.

Data activities

Label activities

Block activities

Table 1: Ethogram of activity categories and actions identi-
fied in the video data.

4.6.2 Analysis of Visualization Design. We analyzed the pictures
taken by participants after the completion of the physicalization
creation process to identify (i) the visualization type; (ii) compo-
sition; (iii) color association; (iv) axis mapping; (v) data labeling
position; and (vi) labels’ reading direction. These codes emerged
during an iterative process of analysis of the resulting physicaliza-
tions and aim to describe how the blocks and labels were mapped
and distributed on the canvas to visualize the provided dataset.

Visualization type describes the distribution of blocks and the
use of the multi-direction stacking affordance of the toolkit in the
canvas. 3D visualizations utilize multiple levels of stacked blocks
to distribute data values using height (z-axis) within the 3D space.
On the other hand, planar visualizations were constructed using a
single level of blocks, thus distributing them only in the 2D space
(flat surface, x and y-axis). For instance, blocks organized in towers

(stacked) are described as 3D, whereas visualizations that do not
stack more than one block in the canvas are planar.

Composition refers to visualization archetypes based on the dis-
tribution, dispersion, organization, and/or positioning (location) of
blocks and groups of blocks within the canvas space. Composition
archetypes emerged from the analysis of all the resulting physical-
izations, grouping them by look-alike block distributions as new
archetypes appeared. For instance, blocks organized equidistantly
and dispersed across the canvas belong to a different archetype
than those not organized equidistantly; or those clustered in one
corner of the canvas.

Color association describes how participants use color affordance
of the toolkit. Generally, the color of blocks could be used to map
sequential or categorical attributes from the dataset into the canvas
space. In contrast, the number of stacked/grouped blocks is used to
represent values.

Axis mapping refers to the use of the canvas space to map se-
quential and categorical attributes into the x and y-axis (from the
viewer’s point). For instance, a physicalization that utilizes the hor-
izontal direction (x-axis) to spread year values (sequence), whereas
the canvas depth (y-axis) is used to map seasonal values (categories).

Data labeling position provides information about the location
of each of the 4 label types: title, sequential, categorical, and value
labels. For instance, whether a label is located on the canvas, next
to a block, on top of a value block or a placeholder block, or onto
one of its faces (in the z-axis).

Labels’ reading direction registers the orientation of each label
type from the participant’s point of view. This describes if the label
can be read from their perspective (in a default direction), it is
upside down, or rotated on an approximately 90 degrees angle; and
whether all labels follow a consistent direction pattern or are in
mixed directions.

4.6.3 Analysis of Influence of Orientation. Weanalyzed the changes
participants made to the physicalization’s labels after each shift in
orientation (three instances) using the pictures they took at the end
of each iteration. We followed the analysis of visualization design
and registered the changes in data labeling position and reading
direction for each of the four types of labels (title, sequential, cat-
egorical, and values). In addition, we compiled a list of actions as
descriptors of the changes in position or tweaks and their occur-
rence per participant. For instance, a title label moved from the back
of the canvas to the front, or value labels moved from the canvas
to the top of towers of blocks were described as a “relocation”. Sim-
ilarly, changes in orientation of labels or placeholders to preserve
their reading direction were described as “rotations”. Finally, we
refined the list of actions as new ones emerged and organized the
resulting dictionary in clusters when appropriate, e.g., grouping
actions of low occurrence.

5 FINDINGS
To answer our research question we structured the findings in three
sections. The first section presents an overview of the construction
and contextualization process when creating a physical visualiza-
tion. The second section elaborates on the relation between the
physical and textual properties of the visualization design. The last
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Figure 2: Activity categories over time for each participant for tasks 1 and 2: data (■), block (■), and label activities (■).

section shows the influence of orientation on the changes to the
textual properties of the physicalization.

Overall, we found that (i) the creation of physicalizations is an
intertwined process of label and block activities and unique per
participant, (ii) the final visualization design is an integration of
data labels and physical constructs, and (iii) the relations between
these labels and constructs are influenced by orientation changes.

5.1 Construction & Contextualization Process
Herein, we discuss the role of labeling during the physicalization
creation process. We first discuss the actions observed in general, af-
ter which we go into further detail on behavioral patterns observed
within the label and block activities, and across activity categories.

5.1.1 Overall creation process. Across all 32 tasks (16 participants
× 2 tasks), participants spent on average 13 minutes to complete the
task (𝜎 = 4.5 minutes). 9 participants performed task 2 (T2) faster
than task 1 (T1) on average by 4 minutes, whereas 7 participants
performed T2 slower than T1, on average by 3.5 minutes.

Looking at the occurrence of activities over time, we observed
that the construction and contextualization of physicalizations is
an intertwined process, as illustrated in Figure 2. This means that
labeling happens throughout the creation process rather than at

Figure 3: Different approaches to ordering labels (■): at the
very beginning of the task (P14-T2), after block activity (■)
took place (P1-T2), or at the very end of the task (P10-T2).

the end. Across all participants and tasks, on average 53.5% of their
time was spent on any type of block activities, 22.7% on any type
of labeling activities, and 23.7% on any type of data activities.

Data activities such as looking at the data table generally hap-
pened throughout the process, as can be seen from the short time
periods throughout the task (Figure 2). Block activities appear in
longer periods of time clustered together. Lastly, label activities
vary from short time periods throughout to clusters of longer time
periods spread across the task, for example at the very beginning of
a task to plan out the visualization design or at the end to complete
the block constructs. Figure 4 provides a further detailing of the
activities observed and the average time spent on each.

Following the overall process observations, we zoom in on the
behavioral patterns within and between the different activity cat-
egories. For example, some participants built all constructs first
(block activities), and then labeled the whole visualization (label
activities), whereas others applied a more parallel process in which
block and label activities alternated and/or intertwined. For an
overview of the timelines per participant per task please refer to
the supplementary material.

5.1.2 Label activity patterns and label types over time. For each task,
we extracted when which out of 4 label types was handled, and
analyzed the relation between ordering, labeling, and relabeling.

Ordering. For 16 tasks (50%) we observed the ordering of labels
at the beginning of the creation process (before any block activities).
For example, P14-T2 in Figure 3 and as illustrated in Figure 4 by
‘Ordering labels’. In contrast, we found that for 7 tasks (21.9%)
ordering happened either along the creation process – such as P1-
T2 in Figure 3 – or at the end (after block activities took place) –
see P10-T2 in Figure 3. Lastly, the 9 remaining tasks (28.1%) did not
involve any ordering of labels at all.

Labeling. Looking at the use of each label type over time we
observed different strategies:

• Title labels: For more than half of the tasks the title label was
placed at the very end (f = 19; 59.4%), whereas for 13 tasks (40.6%),
the title label was placed at the beginning or first half of the task.
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Figure 4: Illustrations of the observed Block and Label actions, and the percentage of the average time spent on each action
that appeared during the creation process.

• Sequential & Categorical labels: We observed the placement of
sequential labels was performed (i) throughout the task whilst
building sequential block constructs (f = 12; 37.5%), or (ii) at
the beginning or first half of the task (f = 12; 37.5%). For the
remaining tasks, this happened at the end of the process (f =
8; 25%). For categorical labels, we observed that they are placed
either at the beginning (f = 9; 28.1% ) or first half of the task (f
= 8; 25%); during the final half (f = 3; 9.4%) or at the end of the
task (f = 9; 28.1%); or spread out during the task (f = 3; 9.4%).
When we cross-referenced the placing of sequential and categor-
ical labels, we observed some participants placed both of them at
the beginning of the task to plan the visualization (f = 9; 28.1%);
whereas others preferred to place both at the end (f = 6; 18.8%).
Moreover, some participants chose to place categorical labels in
the beginning (f = 6; 18.8%) or the end of the task (f = 5; 15.6%)
whilst sequential labeling was spread across the task, placing
them either before or after a sequential construct was created.

• Value labels: For the majority of tasks, the labeling of values
happened at the end of the task (f = 25; 78.1%), after the physical
constructs were created. Of these tasks, 7 spent a longer period of
time on placing all value labels, 5 spent a shorter period of time
on creating a single key, and 2 involved the placement of value
labels at first after which a key is created as well (P4, P9). For
2 tasks (6.3%) a longer period of time is spent on value labeling
at the beginning or first half of the task. For instance, P14 spent
time placing labels to plan out their visualization design, whereas
P3 did the same to create a ‘legend tower’ (Figure 6). Lastly, for 5
tasks (15.6%) the value labeling happened throughout the task.
Relabeling.We observed that relabeling generally occurred for

categorical and sequential labels rather than for value and title
labels. To give an example, P8 placed categorical labels on the first
bar charts they build, but as they got occluded by the subsequent
constructs, they updated the categorical labeling after all physical
constructs were finished. In contrast, P14-T1 relabeled each value
label as they built physical constructs, after they had placed all labels
at the beginning of the creation process to plan their visualization.

5.1.3 Block activity patterns. For each task we extracted which
block action(s) involved the largest percentage of time and whether

or not they occurred in a chain of actions. To give an example,
Figure 5 shows that for P6-T2 the most occurring chain of actions
is collect, build in hand, and place in canvas. Overall, we observed
four general strategies:

• Collect – build in hand – place in canvas (f = 10; 31.3%).
• Place in canvas (f = 9; 28.1%).
• Collect – place in canvas (f = 8; 25%).
• Build in hand – place in canvas (f = 5; 15.6%).

The occurrence of these different strategies to build and place
constructs can be explained by the affordances of the apparatus. The
physical blocks allow for the construction and ‘clicking’ together
in multiple ways (in contrast to stackable tiles).

Figure 5: P6-T2 illustrates the block activity pattern collect
(■) – build in hand (■) – place in canvas (■).

Organization. We observed different strategies in the organi-
zation of blocks. For instance, P5-T1 organized multiple block con-
structs on the canvas before placing them (see Figure 6). Moreover,
P13-T2 first repeats the collection and organization of blocks within
the canvas (Figure 4; ‘Organizing blocks’), after which they start
placing all of them.

Rearrangement. For 4 tasks (12.5%), we observed that a longer
period of creation time was dedicated to the rearrangement of one
or more blocks after their placement, for instance halfway through
and/or at the end of the task.

5.1.4 Patterns across block and label activities. If we look at the
relation between block and label activities, generally, we observed
that for 6 tasks (18.8%) all block activities were performed first,
after which label activities were done (for example Figure 7; P16-
T1). For the remaining 26 tasks (81.3%) we observed an alternating
and/or intertwined process of block and label activities; meaning
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Figure 6: P3-T1 showing their ‘legend tower’, P5-T1 organizing block constructs on the canvas before placing them, P7-T1
simplifying construction through rotation of the canvas, and P15-T1 using a label to assist in reading the data table.

that participants were alternating between longer periods of time
spent on label or block activities (Figure 7; P4-T2) or spent shorter
periods of time on label and block activities subsequently, resulting
in a more intertwined process (Figure 7; P14-T1).

Other examples show longer time periods of isolated label or
block activities at first, that become shorter and more intertwined
over time (Figure 7; P1-T1), or vice versa, planning out the visu-
alization using an intertwined process, after which isolated block
and label activities are performed (Figure 7; P5-T2).

Figure 7: Different patterns across block (■) and label (■)
activities: performed subsequently (P16-T1), in alternation
(P4-T2), labeling after which block and label activities are
intertwined (P14-T1), from alternation towards intertwined
(P1-T1), and from intertwined towards alternation (P5-T2).

Figure 8: Examples of intertwined patterns across block and
label activities: P3-T2 developed a pattern of collect (■),
build in hand (■), place (■), and label (■). P8-T1 used place-
holders (■) while labeling each sequence label.

An example of a fully intertwined process of block and label
activities is P3-T2 (Figure 8). They mentioned that they first used
the sequential and categorical labels to plan out the canvas, and
placed each value label as they build constructs for each data point.

Lastly, looking at the placement of placeholder blocks meant for
labeling, we observed that this often occurs in parallel or in close
proximity of label activities (Figure 8; P8-T1).

5.1.5 Patterns across data and label activities. Looking at the rela-
tion between data and label activities, we observed that when block
activities occur before label activities, this can influence the need
for data activities, as physical constructs can be used as reference
and/or means of verification.

For the 6 tasks that participants first performed all block activi-
ties and then labeling, we found that they did not look at the data
table while labeling, as they could use their physical constructs
as reference for extracting values. Similarly, we observed this for
time periods throughout the alternating and/or intertwined pro-
cesses, and especially at the end of a task when placing value labels.
The placement of value labels at the end of a task was regularly
accompanied by verification before, during, or after the labeling.

5.1.6 Other activities. We observed that participants sometimes
used creative methods to support the creation process. For example,
P7 rotated the canvas repeatedly to bring the area of interest closer
to them and simplify construction (Figure 6; P7-T1), whereas other
participants used the storage box or other attributes to cover up
parts of the paper data table to guide reading (Figure 6; P15-T1).

Regarding the use of the different block faces, we observed that
participants either cared much or not at all about the direction of
the open and closed block faces. Participants that paid close atten-
tion to the order of block faces tended to build slower and/or more
carefully as precision was required. Lastly, P4 and P8 regularly
clicked the wrong block faces together and had to correct them-
selves. They are the only two participants that showed some minor
struggles when constructing the blocks in 3D space, due to their
affordance of being attachable in multiple directions. Participants
identified different advantages for the open and closed faces: they
mentioned that closed faces could create more “neat” or “peaceful”
visualizations, whereas the open faces could simplify comparison
through counting. P16 mentioned the potential of the block faces
(open and closed) to encode further information/detail, i.e., meaning
(“to communicate a food item with or without sugar”).
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Figure 9: Overview of all visualization designs created by participants. An enlargement is available in supplementarymaterial.

5.2 Visualization Design
In this section, we elaborate on the visualization type and composi-
tion, color association, axis mapping, and use of data labels as part
of the final visualization designs created by the participants.

5.2.1 Visualization type and composition. Overall, we observed 5
different visualization archetypes across all 32 tasks. Figure 9 shows
an overview of the visualization designs created by the participants
and their corresponding archetypes, including:

• Grid: Equidistant blocks dispersed across the canvas (f = 11;
34.4%), for example, P2-T1.

• Line: Blocks placed subsequently in a single direction (f = 8;
25%), for example, P10-T1.

• Clusters: Blocks systematically organized in multiple graphs
(f = 6; 18.8%), for example, P1-T1.

• Collection: Blocks randomly organized in multiple graphs (f
= 4; 12.5%) for example, P6-T1.

• Compact: Blocks ‘clumped together’ with no dispersion across
the canvas (f = 3; 9.4%), for example, P4-T1.

Out of all 32 physicalizations created, 27 physicalizations used
the physical 3D space to visualize data in an upward direction
(height). Only 5 physicalizations were created within the plane,
by 4 different participants (Figure 9; indicated by ‘planar’). 4 of
these physicalizations were of the line archetype, either horizontal
or vertical within the canvas, whereas outlier P13-T2 created a
collection of waffle charts in the canvas (Figure 9; P13-T2).

We observed that for 6 physicalizations diagonal spacing was
introduced into the x and/or the y-axis (Figure 9; indicated by
‘diagonal’). P10-T2 created a complete diagonal line visualization,

P6-T2 created a collection of diagonal graphs, P9-T2 and P14-T1
created a grid with a diagonal offset in the x-axis, and P16 created
a line of diagonal graphs (T1) and diagonally spaced clusters (T2).

Lastly, P12-T2 created a special case of a collection, as the spatial-
ity in the canvas was used to represent a geographical map of the
countries, to create a more “impactful” visualization to represent
carbon emissions (Figure 9; P12-T2).

5.2.2 Color association. For 28 tasks (87.5%) the color of blocks
was associated with categorical attributes. Hence, participants used
color to differentiate between countries or seasons. In the other 4
tasks (12.5%) color was used to differentiate between years (sequen-
tial attributes). Looking at the exact colors that were allocated to
categories of the datasets, we observed more consistency in color as-
sociation with seasons than with countries. Participants explained
different approaches to the color mapping, which were either (i) as
a utility to separate data (f = 12; 37.5%), or (ii) to create a conceptual
mapping to familiar concepts (f = 20; 62.5%).

For the 16 tasks that involved the dataset on UK rainfall, the
most common color allocations were green for spring (f = 13), blue
for winter (f = 12), orange for autumn (f = 12), and yellow (f =
8) or red (f = 5) for summer. For 13 tasks participants consciously
allocated color to seasons, based on associations between color and
temperature (i.e. blue for a cold winter temperature), or seasonal
landscape (i.e. yellow for a “dry climate” during summer). As an
outlier, P14-T2 strategically kept the color red aside to highlight
extremums in rainfall per year (see Figure 9; P14-T2).

For the 16 tasks that involved the dataset on CO2 emissions, the
most common color associations were orange for Netherlands (f =
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7), red for Spain (f = 6), red (f = 4) or blue (f = 4) for the United
Kingdom, yellow (f = 5) or green (f = 4) for Belgium, and blue (f
= 5) or green (f = 4) for Norway. For 6 tasks participants tried to
allocate color to countries, based on the colors of their flag (red
for Spain) or other colors of national importance (orange for the
Netherlands), followed by a process of elimination.

Overall, participants’ strategy in the use of color association is
dependent on the topic of the dataset. Accordingly, results suggest
the adoption of a pragmatic approach to relate colors to familiar
concepts first (e.g., color hue with the temperature of seasons, or
flags), followed by the association or allocation of the remaining
color resources by process of elimination.

5.2.3 Axis mapping. The most common mapping of axes we ob-
served was that both sequential and categorical attributes were
represented from left to right (f = 7; 21.9%). For instance, we ob-
served 6 line and 1 line (diagonal) archetype displaying this pattern.
Besides that, we observed equal occurrences of physicalizations that
represented (i) sequential data from left to right, and categorical
data from either front to back or back to front, and (ii) categorical
data from left to right and sequential data from front to back or vice
versa (f = 4; 12.5% for each occurrence). Lastly, we observed for 4
physicalizations that one data attribute was represented from left
to right, while the other attribute was represented through spatial-
ity. For example, for 3 physicalizations of the collection archetype,
categorical data was represented from left to right and sequential
data was represented using dispersed positioning in the plane.

Although participants generally followed the structure of the
data table while constructing their physicalization, the only times a
randomization of categorical data took place was for the emissions
dataset, for which participants randomized the order of countries,
consciously or not (f = 6; 18.8%). This also happened a single time
for the rainfall dataset, which was adapted by choosing a different
season as the starting point for each year.

Hence, we conclude that generally for two data attributes (table
top to bottom), if one attribute is represented left to right, the other
is represented either back to front or vice versa, with no particular
preference for categorical or sequential data in either axis.

5.2.4 Data labeling position and reading direction. Overall, for the
majority of tasks (f = 28; 87.5%) participants placed all labels in
their default reading direction (left to right, labels legible from the
viewing point). However, we observed different approaches in the
positioning and orientation for each label type:

Figure 10: Different approaches to reference labels: P4-T1
placed labels for each distinct value on top of the physical
bar charts, whereas P5-T2 placed labels on three different
sides of the physical constructs to anticipate viewing from
multiple orientations.

Title: For the majority of tasks the title label was placed on
the canvas (f = 28; 87.5%) and for 4 (12.5%) on the side or top
of placeholder blocks (Figure 9; P1 & P8). Looking at the relative
location of the title, for 14 tasks it was placed in the front of the
canvas (of which 6 in the center), for 11 tasks in the back (of which
7 in the center), and for 7 tasks in the middle area (of which 3 on
the left). Lastly, we observed that 2 participants placed title labels
in counterclockwise reading direction (f = 3; 9.4%, Figure 9; P1-T1,
P11-T1/2) or clockwise direction (f = 1; 3.1%, Figure 9; P1-T2).

Sequential attribute: For the majority of tasks (f = 28; 87.5%)
the sequence labels were placed on the canvas alongside the physi-
calization. For 2 tasks they were placed as a key in the back center
of the canvas, either with (Figure 9; P11-T2) or without placeholder
blocks to communicate the color mapping (Figure 9; P12-T2). P8-T1
placed the sequence labels on yellow placeholder blocks alongside
the physicalization and P10-T2 placed them against the physical
data points of the physicalization. Lastly, we observed that 1 par-
ticipant placed sequential labels in a counterclockwise reading
direction (f = 2; 6.3%, see Figure 9; P1-T1/2).

Categorical attribute: For 18 tasks (56.3%) the category labels
were placed on the canvas alongside the physicalization. For 11
tasks they were placed as a key, either on the canvas alongside
placeholder blocks (f = 6; 18.8%, for example, Figure 9 P2-T2), or
on top of the placeholder blocks (f = 5; 15.6%, for example, Figure 9
P6-T1). Looking at the relative location of the category key within
the canvas, the majority (f = 7; 21.9%) was placed in the front of
the canvas (of which 4 on the right). For 3 tasks the category labels
were placed or attached against data points of the physicalization
(Figure 9; P8-T1, P10-T1, and P13-T1). P13 mentioned that for each
country bar chart, they placed the country label on the bar with the
highest value for visibility. Lastly, we observed that 1 participant
placed categorical labels in counterclockwise reading direction (f
= 2; 6.3%, Figure 9; P1-T1/2).

Data values: For 15 tasks (46.9%) all value labels were used to
indicate each individual data point, either by placing them on top of
each bar chart (f = 13; for example Figure 9; P1-T1), or on the canvas
in front of each bar chart (f = 2; for example Figure 9; P12-T1). For
11 tasks (34.4%) a single value label was used to create a key, either
by placing it on the canvas by itself (Figure 9; P10-T1), alongside
a placeholder block (Figure 9; P5-T1), or on the top (Figure 9; P2-
T2) or the side (Figure 9; P8-T1) of the placeholder. Lastly, there
were 6 tasks in which multiple value labels were used to create
reference points for data extraction. For example, P3-T1 created a
‘legend tower’ for sideways height comparison with the bar charts
(Figure 6; P3-T1). Likewise, P4 included reference labels for each
distinct value on top of the bar charts, as well as included a key at
the right side of the physicalizations. However, they explained that
when viewed from above, the reference labels allowed for value
estimation of bars of similar height (Figure 10; P4-T1). P9-T1 placed
reference labels on the canvas in front of the first row of data points
(Figure 9; P9-T1), and P13-T1 placed them against the first row of
data points (Figure 9; P13-T1). Lastly, in addition to a key, P5-T2
provided reference labels on 3 sides of the bar charts to anticipate
for viewing from different orientations (Figure 10; P5-T2). Moreover,
we observed that 2 participants placed data value labels in mixed
reading directions (f = 1; 3.1%, see Figure 9 P1-T1).
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In sum, participants placed title labels in a central location on the
canvas. Similarly, sequence labels were placed on the canvas, but
then alongside one of the sides of the physicalization. In contrast,
category labels were placed on the canvas alongside the physical-
ization, as well as a key separate from the physicalization to encode
color mapping. Lastly, for almost half of the tasks all value labels
were used to indicate each individual data point, whereas, for a
third, a single value was used to create a key.

5.3 Influence of Orientation
Herein, we discuss the role of labeling when viewing physical-
izations from different orientations. Participants were asked to
rotate the canvas with 90 degrees increments and assess their labels
(whether they wanted to change the labels to read them effectively
and comfortably). We elaborate on the challenges encountered with
the physical constructs within the canvas and the coping strategies
participants adopted when manipulating labels to more effectively
convey the information presented in their physicalizations.

5.3.1 Challenges of orientation. The rotation of the canvas intro-
duces viewing perspective challenges that affect the digestion of
the presented labels. Taking as the starting point the most common
physicalization construction, we will unfold the potential issues
encountered during the iterative change of orientation.

We take as a reference a 3D grid of data points with value la-
bels on top of the bars; categorical and sequence labels placed on
top of the canvas alongside the bars’ rows/columns, and the title
label located on the canvas at the front (all labels legible from the
viewing point). For instance, after a 90 degrees rotation, all labels
are read sideways and categorical/sequential labels are hidden be-
hind stacked blocks. After a second 90 degrees change, labels are
displayed upside down and the title label is pushed to the far end
of the canvas. As such, each orientation change introduces (i) a
change in viewing position affecting label legibility and salience,
and (ii) a change in characters/numbers reading direction. These
factors introduce the following challenges:
• Reading Direction occurs when text is not displayed in the de-
fault/legible orientation (characters displayed upwards for ease
of reading), but is rotated clockwise, counterclockwise, or is pre-
sented upside down, thus introducing higher cognitive demand.

• Occlusion occurs when labels are hidden behind block constructs,
making viewing from all directions more difficult.

• Proximity and Organization occurs when labels are relocated,
increasing their distance from the viewing point, and therefore
affecting the salience of information and the users’ predefined
mental model of the physicalization.

• Ordering and Direction occurs when the order of labels alters their
meaning, hindering the digestion of the information displayed.
For example, a sequence of year labels that loses chronological
order upon multiple orientation changes.

5.3.2 Changes to data labeling as a coping strategy. In our study,
participants were invited to modify (as they wished) the display of
labels after each viewing orientation iteration. Herein, we elaborate
on the changes participants made to the data labeling across the
orientation conditions. In total, there were 96 conditions (16 partic-
ipants × 2 tasks × 3 orientations). We did not find any significant

differences between the orientation conditions (clockwise or coun-
terclockwise). Overall, we observed 4 different types of changes
made to the data labels (Table 2) listed in order of most occurrence:

Table 2: Changesmade to each label type – title (■), sequence
(■), category (■), and value (■) – across the 3 orientations.

Rotation in a (counter)clockwise direction to set the reading
direction back to the original default after the orientation change (f
= 61-72; 63.5-75%). Although some participants changed the reading
direction of all label types (P2, P3, P4), others prioritized changes
to the orientation of categorical and sequential labels over title and
value labels, specifically when these were upside down after the
second orientation change (P6, P13). However, some participants
reported not caring about reading direction at all (P1, P5).

Relocation of labels within the canvas to avoid occlusion, in-
crease proximity, or preserve organization (f = 26-41; 27.1-42.7%).
Generally, participants preferred to relocate title labels over the
other types across orientation changes. This could be caused by a
desire to maintain the original presentation of the title (P4, P10) or
to place the label in a position that is salient and avoids occlusion.

Introduction of an Offset in relation to the physicalization to
compensate for the occlusion of labels (f = 5-6; 5.2-6.25%). Offset
strategies occur when modifying sequential and categorical labels
(found alongside the block constructs) as they might get occluded
after each change of orientation.

Other outlier changes (f = 1-2; 1-2%), such as the Re-purposing
of blocks to use them as a key to two different data attributes (e.g.,
P5-T1 reused the block representing the scale to create a legend for
categorical attributes). Moreover, we observed the Addition of new
blocks to create a category legend and avoid occlusion (P5-T1), or
of unused value labels to add detail (P13-T1).

5.3.3 Changes to physical constructs as a coping strategy. In addi-
tion to the changes to the data labeling during the different orien-
tation iterations, we observed participants’ strategies to try and
anticipate orientation challenges during the creation process. These
strategies emerged from the accumulation of participants’ out-loud
rationalization of “improvements” across tasks as a response to the
changes of orientation experienced and/or anticipated.

The following strategies are a reflection of isolated instances of
behaviors observed during the study to provide further evidence of
coping mechanisms adopted at the creation level that we aim to be
illustrative as much as they could be guiding for future work.

Space Dispersion and Organization: 7 participants played with the
use of the canvas space (e.g., distancing blocks, centering the physi-
calization). This affected the organization of data blocks to facilitate
the digestion of information and avoid occlusion. For instance, P1-
T2 and P2-T2 reported increasing the space between bar charts
(dispersion), whereas P4-T2 mentioned placing their data blocks in
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the middle (centering) of the canvas to make it “look good” and have
space around them. Similarly, P6-T2 indicated they decided to add
space between bar charts so the visualization looked less “messy”,
but they were concerned the use of space could conveymeaning (e.g.
separate different categories) when they aimed to solely improve
readability. On the other hand, P9-T2 reported deciding to spread
out bar charts so they do not visually block each other, whereas
P13-T2 pushed groups of bars as far away possible so they would
not “distract” each other. Moreover, P16-T2 described organizing
their bar charts so the smallest values (e.g. countries with lower
CO2 emissions) were placed on the outskirts of the canvas, whereas
the highest values (e.g. countries with higher CO2 emissions) were
placed at the center so they would not be occluding.

Introducing Diagonal Offset: 3 participants experimented with
the addition of a diagonal offset between data values. For instance,
P10-T2 increased the separation in both the x and y-axis to cre-
ate a “diagonal” line rather than mapping values on a single axis.
Moreover, P9-T2 introduced a diagonal offset to display their grid
as a rhomboid rather than a square, whereas P6-T2 introduced a
diagonal offset for each bar chart in a collection archetype.

Addition of Key Placeholder: 5 participants introduced the use of
blocks as key placeholders or legends. This was aimed to avoid the
occlusion of labels behind blocks as legends were pulled away from
the location of the physicalization structure. For instance, P8-T2
discussed their addition of a key aimed to facilitate looking at it
from any possible angle. Additionally, P5-T2 mentioned placing
a legend centered within the canvas to anticipate “hidden” labels
after a 90 degrees turn, whereas P13-T2 wanted to use the free space
available in the middle of the canvas to place all the information
necessary to read their visualization (a legend for categories’ color
mapping and sequential labels to indicate organization).

Experimenting with Archetypes: 3 participants experimented with
the use of the canvas space, thus changing the composition of their
physicalization and creating a different archetype (e.g., moving from
a 3D visualization to a planar one). For instance, P13-T2 mentioned
“making it flat” and avoid building different stories to facilitate
understanding the data from every angle (and tackle occlusion).
P2-T2 discussed the trade-off of the use of planar visualization as
it introduces directionality (i.e., once rotated 90 degrees it looks
“sideways”), which P15-T2 felt was limiting even though a planar
visualization could remove occlusion problems.

Highlighting: 1 participant (P14-T2) decided to highlight the ex-
tremums of the data values with different colored blocks to improve
the visualization of minimum andmaximum values at a glance with-
out necessitating to estimate height differences in the 3D space.

6 DISCUSSION
We investigated the role of data labeling in the physicalization
creation process, the visualization design, and the resilience of data
labels across orientations. Our findings show that (i) label activities
are alternated and/or intertwined with block activities during the
creation process, (ii) labels are integrated with physical constructs
in the final visualization design, and (iii) this relation between data
labels and physical constructs is influenced by orientation changes.
Overall, our results suggest that the use of data labels is fundamental
to consider for future physicalization designs.

6.1 Towards A Principled Use of Data Labels in
Physicalization Design

Although physicalizations embody data in their material and physi-
cal form [30], they still benefit from the inclusion of contextualizing
elements (i.e. data labels, axes, legend, and annotations) to support
the extraction of information from the physical representation.
However, despite the evident importance of providing context to
visualizations, most related work on physicalization is not labeled
at all [e.g. 25, 39, 54]. Physicalizations that do use contextual ele-
ments are often inconsistent or specific to that individual design [e.g.
22, 29, 45]. As the current definition of physicalization [29] suggests,
the focus is on physicality and not on ‘data labeling’ or other contex-
tual elements of the physicalization in use. Moreover, the physical
and spatial nature of physicalizations introduces additional chal-
lenges, as it remains unclear where to locate different kinds of
labels and how they accommodate multi-user scenarios. Hence,
there is currently no principled way of contextualizing physical
representations of data.

The field of Information Visualization has established ways to
discuss and implement the contextualization of digital data repre-
sentations [19, 23]. However, it remains unclear how this translates
to the field of physicalization. Implementations of 2D visualizations
in the field of InfoVis are more homogeneous than 3D representa-
tions of data. Hence, some variance will always exist in the data
labeling of 3D physical constructs. Nonetheless, it would be useful
to aim for the development of a collection of ‘best practices’, guide-
lines, or at least illustrative work to, as a research field, become
more strategic at contextualizing physicalization design.

It is apparent that our specific apparatus aids in the creation of
physicalizations of the ‘bar chart aesthetic’. However, it still allowed
participants to create a variety of visualization archetypes going
beyond the traditional use of bar charts. We observed that across
these different archetypes, the use of data labels was consistent: the
majority of data labels were placed in default reading direction and
were paired and/or integrated with physical constructs (i.e. value
labels on top of data points). Moreover, labeling was used in combi-
nation with other visualization components such as color encoding
and axis mapping. As such, future work could investigate whether
similar use of data labels, and similar integration of data labels with
physical constructs will occur for a variety of physicalizations.

6.2 Utility of Labeling in the Physicalization
Creation Process

Constructive Visualization work [17] previously explored how the
use of physical tokens can support the authoring of physical data
representations. However, these approaches focus on the construc-
tion of visual mappings, and thus far did not actively include the use
of data labels in the authoring process. Instead, the labeling or anno-
tation of data is treated as a subsequent process to the construction
process [27, 52], or their use is left up to participant preference [17].
As a result, it remains unclear what role data labeling can and/or
should have in the creation process of physicalizations.

As the act of data labeling is part of a larger process of construc-
tion and contextualization, we decided to study it in the context of
a constructive visualization process. Hence, we designed a toolkit
that follows state of the art methodology [27, 52], with the inclusion
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of both physical tokens as well as textual labels to investigate the
use of data labels during the creation process. Our findings show
that this allowed participants to alternate and/or intertwine label
and block activities during the creation process. This illustrates the
utility of active inclusion of data labels for physicalization creation.
Moreover, we observed that the use of data labels can serve different
purposes: to plan the visualization before including physical con-
structs, to guide the creation of subsequent physical constructs, and
to verify constructs afterward. Thus, the use of data labels allows
verifying physical constructs ad hoc, in particular when the label
and block activities are heavily intertwined. Hence, the inclusion
of data labels could provide people with more agency within the
creation process of physicalizations.

The extended infovis pipeline model [46] describes the contextu-
alization of physicalizations as ‘decoration’ operations as part of
presentation mapping. However, we observed that labeling activities
can occur across different pipeline operations, such as the loading
of data by ordering data labels in the workspace, or as part of visual
mapping as they are organized as elements in the canvas alongside
block constructs, before the final presentation mapping takes place.

To explain this, we take interest in the interrelation principle.
Wun et al. [52] described this principle as the intertwined nature of
operations due to the physical nature of the authoring tool. How-
ever, as they did not actively include data labels in the toolkits
discussed, no reflections are provided on how labeling fits within
this principle. We argue that similar interrelated processes occur
for data labels as for physical tokens. To give an example, order-
ing data in the workspace outside the canvas is loading data [46].
However, the moment data labels are introduced in the canvas,
relations are created between the data label and (i) other data la-
bels, (ii) other block constructs, and (iii) relative position within the
canvas. As such, data labels could be considered as building blocks
in themselves, not just complementary to physical constructs.

Although Huron et al. [27] provide a conceptual flow diagram
of common construction behaviors, this does not include the act of
annotation as it happened as a secondary task after construction.
Arguably, the act of appropriating data labels within the canvas
and in relation to physical constructs can be described through
those diagram elements as well (i.e. organize, arrange, merge, align)
and should be considered alongside physical tokens in the process.
Hence, it might be necessary to expand existing conceptual models
and/or introduce new models as data labeling is an interrelated
process within itself, and in relation to construction activities.

6.3 Data Label Resilience across Orientations
Prior work has demonstrated the influence of orientation, introduc-
ing ambiguity when extracting information from physical represen-
tations of data [40], and discusses the different types of occlusion
that can occur due to user orientation. In line with this work, we
observed challenges for effective use of data labels due to orien-
tation changes: the correction of reading direction, prevention of
occlusion, and maintenance of proximity and organization.

We argue that the introduction of data labels can mitigate the
challenges introduced by physical 3D space, such as directionality,
occlusion, and user multiplicity. Whereas the use of duplicate data
labels might seem a straightforward solution, the necessity for

duplicates would ‘clutter’ the visualization. To simplify cognitive
digestion, we argue for the use of reactive and resilient data labels.

Reactive data labels can accommodate the point of view of the
user, and solve occlusions created through physical constructs. To
acquire this, two parallel processes would need to happen: (i) data
labels follow the point of view of the user to maintain reading di-
rection and proximity (user-label relation), but are also reactive to
(ii) the physical composition or layout of the physicalization, to pre-
vent occlusion and maintain effective offsets (label-layout relation).
If this is done successfully, it results in a user-label-layout relation
that supports effective extraction of information from physical data
representations for any orientation. Our results on coping strate-
gies through a change in data labels (and to some level physical
constructs) are illustrative for ways in which future physicaliza-
tion designs could counteract orientation influences (such as the
rotation, relocation, and offset of labels). Depending on the system
implementation, these strategies can be informative for the design
of reactive data labels and/or adaptable physical constructs:

For static physicalizations [e.g. 29, 43] data label resilience needs
to be high, as the physical construct is rigid and cannot adapt to
viewing angle and/or perspective changes. Hence, accommodation
for orientation influences is fully dependent on data label design
and adaptability. To give an example, data labels follow the viewer
orientation to adapt reading direction, and if a physical construct
gets occluded in a particular orientation, the label can ‘float’ above
or aside the construct to notify the viewer of its existence.

For dynamic and interactive physicalizations [e.g. 16, 18, 45]
data label resilience can interplay with the specific actuation tech-
nologies implemented. Hence, data label design and/or physical
construct actuation counteract orientation influences in parallel. For
instance, if a physical construct gets occluded, actuation can ‘move’
it aside to maintain the line of sight and the data label follows.

Moreover, on top of the interplay of data labels and actuation,
interaction could also play a role. For instance, users could indicate
ad hoc what information they require and manipulate the data
labels and/or physical constructs accordingly. Our observation of
isolated instances of strategies to cope with orientation through
the change of physical constructs resonates with prior work on
reconfiguration strategies [41]. Herein, they found that proximity
change was generally the most used strategy to rearrange physical
constructs, which relates to the organization and dispersion of
physical constructs we observed.

Lastly, the introduction of multiple users and/or a collaborative
context creates new challenges for data labeling as well. For effec-
tive information extraction by collaborators, there is a necessity for
either maintaining a shared view versus the introduction of individ-
ual viewports. For example, a shared view could be accomplished
through top-down projection or display integration in each physical
data points, whereas individual viewports could be accomplished
through an AR overlay or VR environment.

6.4 Opportunities for Future Work
In our study, we focused on a subset of physicalizations – 3D bar
charts – that are well-established in the field (i.e. [18, 45]). Hence, we
can not make conclusive statements on the labeling of other types
of physicalizations or even other implementations of 3D bar charts.
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Additionally, other label designs (i.e. curved, embossed, transparent,
3D), different ways of attaching labels and construction strategies,
and/or more participants’ agency in designing their own labels
could generate diverse outcomes. Hence, future work is needed to
expand on our initial findings for these particular conditions, to fur-
ther investigate the role of data labeling in the creation, design, and
mitigation of physicalizations with orientation challenges. Lastly,
in the present study, we did not record further demographics (i.e.
occupation, cultural background, native language) that could have
been of influence on the observed labeling behaviors.

First, future work could further compare the different strate-
gies for labeling we observed in the creation process. It could be
valuable to compare the design outcomes of post-hoc, pre-hoc, and
interrelated labeling activities. Moreover, we observed that data
labeling can serve different purposes (i.e. to plan, guide, or verify a
physicalization), hence, it could be further investigated what other
purposes labeling can have beyond the creation process, such as
self-reflection or as part of the presentation to others.

Second, although our apparatus allowed for the creation of dif-
ferent visualization archetypes, further investigation would be nec-
essary to explore the data labeling of physicalizations beyond the
bar chart aesthetic. Subsequently, our study is illustrative of coping
strategies through a change in data labels (and to some level physi-
cal constructs), but is not an exhaustive list of how to contextualize
physicalizations in general. Hence, future work could investigate
the labeling of other types of physicalizations, and expand on cop-
ing strategies for challenges due to physical space.

Third, there are some biases introduced by the characteristics
of our apparatus: the structure of the data table could influence
participants order of creating constructs, and the use of an actual
dataset introduces recognition bias for the ones familiar with the
specific topics. Moreover, the current dataset was two-dimensional
(1 sequential and 1 categorical attribute), hence, we cannot postulate
results for other datasets that are more or less complex, i.e. a more
complex dataset with multi-dimensional data, requiring creation in
multiple axes. Hence, future work would need to investigate how
our findings translate for other datasets and toolkits.

Lastly, as our focus was on the use of data labels for contextu-
alization, the methodology was designed to allow for data label
alterations but not for changes to physical constructs. Hence, future
work is needed to develop further understanding of the interplay
between label resilience and adaptability of physical constructs.

7 CONCLUSION
In this paper, we investigated the role of labeling in the creation pro-
cess, final physicalization design, and when viewed from different
orientations. We designed a custom toolkit including physical to-
kens and textual labels, and asked 16 participants to complete a total
of 32 construction tasks. Our findings show that (i) the creation of
physicalizations is an intertwined process of labeling and construc-
tion activities, (ii) resulting in an integrated visualization design of
data labels and physical constructs, and (iii) these integrated labels
and constructs are influenced by orientation changes. Hence, we
argue for further development of contextualization methods for
future physicalizations, and propose the introduction of reactive
data labels to counteract challenges of orientation.
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